A multicellular spheroid formation and extraction chip using removable cell trapping barriers.

نویسندگان

  • Hye-Jin Jin
  • Young-Ho Cho
  • Jin-Mo Gu
  • Jhingook Kim
  • Yong-Soo Oh
چکیده

This paper presents a multicellular spheroid chip capable of forming and extracting three-dimensional (3D) spheroids using removable cell trapping barriers. Compared to the conventional macro-scale spheroid formation methods, including spinning, hanging-drop, and liquid-overlay methods, the recent micro-scale spheroid chips have the advantage of forming smaller spheroids with better uniformity. The recent micro spheroid chips, however, have difficulties in extracting the spheroids due to fixed cell trapping barriers. The present spheroid chip, having two PDMS layers, uses removable cell trapping barriers, thereby making it easy to form and extract uniform and small-sized spheroids. We have designed, fabricated and characterized a 4 × 1 spheroid chip, where membrane cell trapping barriers are inflated at a pressure of 50 kPa for spheroid formation and are deflated at zero gauge pressure for simple and safe extraction of the spheroids formed. In this experimental study, the cell suspension of non-small lung cancer cells, H1650, is supplied to the fabricated spheroid chip in the pressure range 145-155 Pa. The fabricated spheroid chips collect the cancer cells in the cell trapping regions from the cell suspension at a concentration of 2 × 10(6) ml(-1), thus forming uniform 3D spheroids with a diameter of 197.2 ± 11.7 μm, after 24 h incubation at 5% CO(2) and 37°C environment. After the removal of the cell trapping barriers, the spheroids formed were extracted through the outlet ports at a cell inlet pressure of 5 kPa. The cells in the extracted spheroids showed a viability of 80.3 ± 7.7%. The present spheroid chip offers a simple and effective method of obtaining uniform and small-sized 3D spheroids for the next stage of cell-based biomedical research, such as gene expression analysis and spheroid inoculation in animal models.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparison of radiosensitizing effect of Resveratrol on monolayer and spheroid culture of DU145 prostatic cell line

Background: Radiotherapy is an established therapeutic modality for prostate cancer. Resveratrol, a natural antioxidant, has been shown to inhibit carcinogenesis and to block the process of tumor initiation and progression. No data is available on the response of cellular spheroid to Reseveratol. In this study we have examined the effect of Resveratol on the radiation response of human p...

متن کامل

Nonlinear 3D projection printing of concave hydrogel microstructures for long-term multicellular spheroid and embryoid body culture.

Long-term culture and monitoring of individual multicellular spheroids and embryoid bodies (EBs) remains a challenge for in vitro cell propagation. Here, we used a continuous 3D projection printing approach - with an important modification of nonlinear exposure - to generate concave hydrogel microstructures that permit spheroid growth and long-term maintenance, without the need for spheroid tra...

متن کامل

Reduced DNA damage in tumor spheroids compared to monolayer cultures exposed to ionizing radiation

Background: Several cell lines when cultured under proper condition can form three dimensional structures called multicellular tumor spheroids. Tumor spheroids are valuable in vitro models for studying physical and biological behavior of real tumors. A number of previous studies using a variety of techniques have shown no relationship between radiosensitivity and DNA strand breaks in monolayer ...

متن کامل

Rapid formation of size-controllable multicellular spheroids via 3D acoustic tweezers.

The multicellular spheroid is an important 3D cell culture model for drug screening, tissue engineering, and fundamental biological research. Although several spheroid formation methods have been reported, the field still lacks high-throughput and simple fabrication methods to accelerate its adoption in drug development industry. Surface acoustic wave (SAW) based cell manipulation methods, whic...

متن کامل

Emulsion technologies for multicellular tumour spheroid radiation assays.

A major limitation with current in vitro technologies for testing anti-cancer therapies at the pre-clinical level is the use of 2D cell culture models which provide a poor reflection of the tumour physiology in vivo. Three dimensional cell culture models, such as the multicellular spheroid, provide instead a more accurate representation. However, existing spheroid-based assessment methods are g...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Lab on a chip

دوره 11 1  شماره 

صفحات  -

تاریخ انتشار 2011